855 research outputs found

    Non locality and causal evolution in QFT

    Full text link
    Non locality appearing in QFT during the free evolution of localized field states and in the Feynman propagator function is analyzed. It is shown to be connected to the initial non local properties present at the level of quantum states and then it does not imply a violation of Einstein's causality. Then it is investigated a simple QFT system with interaction, consisting of a classical source coupled linearly to a quantum scalar field, that is exactly solved. The expression for the time evolution of the state describing the system is given. The expectation value of any arbitrary ``good'' local observable, expressed as a function of the field operator and its space and time derivatives, is obtained explicitly at all order in the field-matter coupling constant. These expectation values have a source dependent part that is shown to be always causally retarded, while the non local contributions are source independent and related to the non local properties of zero point vacuum fluctuations.Comment: Submitted to Journal of Physics B: 16 pages: 1 figur

    Non-local quantum correlations and detection processes in QFT

    Full text link
    Quantum detection processes in QFT must play a key role in the description of quantum field correlations, such as the appearance of entanglement, and of causal effects. We consider the detection in the case of a simple QFT model with a suitable interaction to exact treatment, consisting of a quantum scalar field coupled linearly to a classical scalar source. We then evaluate the response function to the field quanta of two-level point-like quantum model detectors, and analyze the effects of the approximation adopted in standard detection theory. We show that the use of the RWA, that characterizes the Glauber detection model, leads in the detector response to non-local terms corresponding to an instantaneously spreading of source effects over the whole space. Other detector models, obtained with non-standard or the no-application of RWA, give instead local responses to field quanta, apart from source independent vacuum contribution linked to preexisting correlations of zero-point field.Comment: 23 page

    Modification of energy shifts of atoms by the presence of a boundary in a thermal bath and the Casimir-Polder force

    Full text link
    We study the modification by the presence of a plane wall of energy level shifts of two-level atoms which are in multipolar coupling with quantized electromagnetic fields in a thermal bath in a formalism which separates the contributions of thermal fluctuations and radiation reaction and allows a distinct treatment to atoms in the ground and excited states. The position dependent energy shifts give rise to an induced force acting on the atoms. We are able to identify three different regimes where the force shows distinct features and examine, in all regimes, the behaviors of this force in both the low temperature limit and the high temperature limit for both the ground state and excited state atoms, thus providing some physical insights into the atom-wall interaction at finite temperature. In particular, we show that both the magnitude and the direction of the force acting on an atom may have a clear dependence on atomic the polarization directions. In certain cases, a change of relative ratio of polarizations in different directions may result in a change of direction of the force.Comment: 29 pages, 3 figure

    The Fermi Problem in Discrete Systems

    Full text link
    The Fermi two-atom problem illustrates an apparent causality violation in Quantum Field Theory which has to do with the nature of the built in correlations in the vacuum. It has been a constant subject of theoretical debate and discussions during the last few decades. Nevertheless, although the issues at hand could in principle be tested experimentally, the smallness of such apparent violations of causality in Quantum Electrodynamics prevented the observation of the predicted effect. In the present paper we show that the problem can be simulated within the framework of discrete systems that can be manifested, for instance, by trapped atoms in optical lattices or trapped ions. Unlike the original continuum case, the causal structure is no longer sharp. Nevertheless, as we show, it is possible to distinguish between "trivial" effects due to "direct" causality violations, and the effects associated with Fermi's problem, even in such discrete settings. The ability to control externally the strength of the atom-field interactions, enables us also to study both the original Fermi problem with "bare atoms", as well as correction in the scenario that involves "dressed" atoms. Finally, we show that in principle, the Fermi effect can be detected using trapped ions.Comment: Second version - minor change

    Spontaneous absorption of an accelerated hydrogen atom near a conducting plane in vacuum

    Get PDF
    We study, in the multipolar coupling scheme, a uniformly accelerated multilevel hydrogen atom in interaction with the quantum electromagnetic field near a conducting boundary and separately calculate the contributions of the vacuum fluctuation and radiation reaction to the rate of change of the mean atomic energy. It is found that the perfect balance between the contributions of vacuum fluctuations and radiation reaction that ensures the stability of ground-state atoms is disturbed, making spontaneous transition of ground-state atoms to excited states possible in vacuum with a conducting boundary. The boundary-induced contribution is effectively a nonthermal correction, which enhances or weakens the nonthermal effect already present in the unbounded case, thus possibly making the effect easier to observe. An interesting feature worth being noted is that the nonthermal corrections may vanish for atoms on some particular trajectories.Comment: 19 pages, no figures, Revtex

    Initial correlations effects on decoherence at zero temperature

    Full text link
    We consider a free charged particle interacting with an electromagnetic bath at zero temperature. The dipole approximation is used to treat the bath wavelengths larger than the width of the particle wave packet. The effect of these wavelengths is described then by a linear Hamiltonian whose form is analogous to phenomenological Hamiltonians previously adopted to describe the free particle-bath interaction. We study how the time dependence of decoherence evolution is related with initial particle-bath correlations. We show that decoherence is related to the time dependent dressing of the particle. Moreover because decoherence induced by the T=0 bath is very rapid, we make some considerations on the conditions under which interference may be experimentally observed.Comment: 16 pages, 1 figur

    Casimir-Polder interatomic potential between two atoms at finite temperature and in the presence of boundary conditions

    Full text link
    We evaluate the Casimir-Polder potential between two atoms in the presence of an infinite perfectly conducting plate and at nonzero temperature. In order to calculate the potential, we use a method based on equal-time spatial correlations of the electric field, already used to evaluate the effect of boundary conditions on interatomic potentials. This method gives also a transparent physical picture of the role of a finite temperature and boundary conditions on the Casimir-Polder potential. We obtain an analytical expression of the potential both in the near and far zones, and consider several limiting cases of interest, according to the values of the parameters involved, such as atom-atom distance, atoms-wall distance and temperature.Comment: 11 page

    Unified view of correlations using the square norm distance

    Get PDF
    The distance between a quantum state and its closest state not having a certain property has been used to quantify the amount of correlations corresponding to that property. This approach allows a unified view of the various kinds of correlations present in a quantum system. In particular, using relative entropy as a distance measure, total correlations can be meaningfully separated in a quantum and a classical part thanks to an additive relation involving only distances between states. Here, we investigate a unified view of correlations using as distance measure the square norm, already used to define the so-called geometric quantum discord. We thus consider geometric quantifiers also for total and classical correlations finding, for a quite general class of bipartite states, their explicit expressions. We analyze the relationship among geometric total, quantum and classical correlations and we find that they do not satisfy anymore a closed additivity relation.Comment: 10 pages, 3 figures (to appear in Phys. Rev. A

    Dynamics of quantum correlations in two-qubit systems within non-Markovian environments

    Full text link
    Knowledge of the dynamical behavior of correlations with no classical counterpart, like entanglement, nonlocal correlations and quantum discord, in open quantum systems is of primary interest because of the possibility to exploit these correlations for quantum information tasks. Here we review some of the most recent results on the dynamics of correlations in bipartite systems embedded in non-Markovian environments that, with their memory effects, influence in a relevant way the system dynamics and appear to be more fundamental than the Markovian ones for practical purposes. Firstly, we review the phenomenon of entanglement revivals in a two-qubit system for both independent environments and a common environment. We then consider the dynamics of quantum discord in non-Markovian dephasing channel and briefly discuss the occurrence of revivals of quantum correlations in classical environments.Comment: 20 pages, 4 figures. Review article, in press in Int. J. Mod. Phys. B, special issue "Classical Vs Quantum correlations in composite systems", edited by L. Amico, S. Bose, V. Korepin and V. Vedra

    Tripartite entanglement dynamics in a system of strongly driven qubits

    Full text link
    We study the dynamics of tripartite entanglement in a system of two strongly driven qubits individually coupled to a dissipative cavity. We aim at explanation of the previously noted entanglement revival between two qubits in this system. We show that the periods of entanglement loss correspond to the strong tripartite entanglement between the qubits and the cavity and the recovery has to do with an inverse process. We demonstrate that the overall process of qubit-qubit entanglement loss is due to the second order coupling to the external continuum which explains the exp[-g^2 t/2+g^2 k t^3/6+\cdot] for of the entanglement loss reported previously.Comment: 9 pages, 5 figure
    • …
    corecore